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• Fuel Cells – a promise of electrochemistry  
 
• Hydrogen popularity 
 
• Proton conductors 
 
• DTU research 

        

High efficiency, is it true? • 
 

Hydrogen pecularity? • 
 

Not always proton conducting? • 
 

What further on? • 
 
 



 

• Promise of Electrochemistry  
       - A fuel cell, how is it working?  
       - High efficiency, is it true?  
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 Fuel Cells                     Batteries   

• External supplied reactants           • Electrode-stored reactants 
• Continuous operation                    • Discontinuous operation 
      fuel-tank-limited                       limited capacity  
      quick refueling                                lengthy recharging 
• Reducing pollution               • Shifting pollution ´´ 





Fuel cells  
 - Promise of electrochemistry 

 Highly efficient 
 Sufficiently pollution-free 
 Flexible in size  
 Compact and quiet enough                                                                                           

- to be sited closer to users  



PEMFC 

56% 

Diesel 
Vehicle 

40% 

Higher efficiency, is it true? • Good to look at entire well-wheel chain  

• FC makes more sense in association  
    with renewable energy sources 
• Efficiency depedent on operation modes 



Efficiency of a thermal engine 
  - dependence on the load range 
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Efficiency of an electrochemical cell  
  - dependence on the load range 
 



Extraction Hydrogen Storage 
98.2% 86% 68% 

Extraction Diesel 
98.2% 

85% 
Crude oil 

32% 

33% 

Efficiency under varied loading levels 

PEMFC 
56% 

Diesel 
Vehicle 
40% 

APU = Auxiliary Power Unit                                      

http://thumbs.dreamstime.com/z/truck-parking-18610992.jpg


 
• Challenges for Materials Science 
       - Pecularity of hydrogen and proton 
       - Proton conducting mechanisms 
    - Consequences of water carriers   
   



Material issues 
- Catalysts and supports  
- Electrode substrates 
- Bipolar plates 
- Seals and others 



Proton conducting electrolytes 
       - operational from room/subfreezing temperatures  

Major requirements  
 
•   High proton conductivity 
• No electronic conductivity 
• Low gas permeability 
• Mechanical strength  
      and flexibility 
• (Electro-) chemical stability 
• Availability 
• Cost  

 



Proton and conductivity 

• A proton has no electron shell of its own  
       - A physicist calls it a fundamental particle  

• A hydrogen atom losing one electron 
       - A chemist calls it an ion, a cation H+ 

→ very strongly reacting with its environment 
    always associated with a carrier  
    in condensed phases 

  Electron Sodium ion (Na+) Proton 

Charge, C -1.6x10-19 +1.6x10-19 +1.6x10-19 

Mass, kg 9.10x10-31 3.82x10-23 1.67 x10-27 

Diameter, m ca. 10-18 m  
(10-9 nm) 

ca. 10-10 m  
(10-1 nm) 

ca. 10-15 m  
(10-6 nm) 

Proton 

Electron 

A hydrogen atom 



Pecularity of Elemental Hydrogen 
                   Differences 

Hydrogen 
 • is a gas 
 • forms acids, e.g. HCl  
   - covalent bonds 
   - volatile gases  
 • forms hydrides, LiH    

Alkali metals 
 •  are active metals 
 •  form salts, e.g NaCl 
    - ionic bonds 
    - high melting point 
 •  forms hydrides, LiH     

Half filled s-orbital 
 e.g. H  1s1 

       Li ...2s1 
      Na ...3s1  
        K ...4s1 

Similarities 



Ionization energy  
of the first group elements 
 

  H → H+ + e- 

The O-H bond, about 0.10 nm,  
 less than 0.14 nm of the O2- radius 

In X - H...Y hydrogen bonds: 
Proton donor: X - H distance ~110 pm 
Proton acceptor: H--Y distance: 160-200 pm  

● Proton has strong attraction to electrons 
    - forming covalent bonds by sharing e- pairs 
    - forming hydrogen bonds 
            



Mechanisms of proton conductivity 
  
Vehicle mechanism  

Moving with a molecular vehicle 

 
Counter-diffusion of the vehicle 

Cations Ionic radius, nm 
Li+ 0,068 
Na+ 0,095 
K+ 0,133 
Rb+ 0,152 
Cs+ 0,167 

 Anions 
Cl- 0,167 
Br- 0,182 
I- 0,206 

  

H3O+ 0,136 

OH- 0,110 

H3O+ 
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Stokes law: 
  Ionic mobility ∝ 1/r•η       
  (radius and viscosity)  



 Abnormal mobility of protons Particles    Mobility 
cm2 sec-1 V-1 

Cation in water (e.g. K+)   ca. 5 x10-4 

Proton in water ca. 36x10-4 

Cation in ice (e.g. Li+)   << 10-8 

Proton in ice ca. 10-1 

 Grotthuss mechanism 
  - protons hop from one site to another 
  - re-orientation of other molecules  
     (structure diffusion) 
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Perfluorinated sulfonic acids (PFSA membranes) 
—(CF2—CF2)x —(CF2 —CF)y — 
 
                                           (O—CF2—CF)m—O —(CF2)n—SO3H 
 
                                                              CF3  

Water 

• High conductivity (0.1 S/cm)  
• Mechanically strong & flexible  
• Gas tight (low gas permeability)  
• Long term durability 



Hydrated PSFA membranes 

To achieve full hydration and 
therefore proton conductivity,  two 
phases are present in the membrane  

 - locally there is a liquid phase 

Water as bridges and vehicles  

for proton transport:  

   6 H2O/SO3
- : minimum conductivity 

 22 H2O/SO3
- : maximum conductivity 



Vehicle mechanism of proton conductivity 
   - why it is of importance? 
 

H2 ⇒ 2e- + 2H+  2H++½O2+2e-⇒H2O 

O2⇐    ⇒ H+ ⇒ 

   ⇒ H3O+ ⇒ 

H3O+ conducting electrolyte 
 

Anodic: H2            →          + 2 e- 

Electrolyte: H3O+
(a) → H3O+

(c) 
Cathodic:  ½O2            + 2 e- → 
____________________________ 
Overall reaction: H2 + ½O2 →  H2O  

H3O+ + H2O 

+ H3O+   2 H2O 

CO3
2- conducting electrolyte 

Anodic: H2              →                  + 2 e- 

Electrolyte: CO3
2-

(a) → CO3
2-

(c) 
Cathode:   ½O2            + 2 e- → 
_______________________________ 
Overall reaction:  H2 + ½O2 →  H2O  

CO3
2- + CO2 

+ CO3
2- H2O+ CO2 

O2- 

Similarity  
  - between SOFC and MCFC  

CO3
2- 

Nafion 

H2 ⇐ 



GM/Opel Fuel Cell 
Marathon 
2004, 10,000 km  
from Hammerfest to Lisbon 

At DTU 101 

55 kg H2O/h 
(+25 kg/h from stack)  

95%
RH 

• Single cell performance 
       > 1 W / cm²  
• Stack performance 
      ca. 1 kW/kg or 1 kW/liter 
• For vehicle propulsion  
      Small cars: ca. 50 kW         
      A stack < 50 Kg and <100 L  

Major system complexing  
   due to water management 
    - humidification of fuel+air 
    - water condensation 
    - water storage + pumping       



More challenges associated with water 
 
• Water management issues 
• Secondary consequences 
 
 - Temperature issue:  LT/HT PEMFC  
  
 - Fuel purity issue:  CO cleanup for reformate H2 
  
 - Cooling issue: temperature gradient and radiator demand 
 
 - Heat recovery:  CHP and integrated fuel processors 



 

• DTU Research 
        - Proton conducting membranes 
  via primary hopping mechanism 
 - Perspectives and future work 

https://www.google.dk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&ved=0CAcQjRw&url=https://jamiefullerton.wordpress.com/2014/03/14/sherlock-bad-traffic-and-a-david-bickham-love-doll-my-buzzfeed-fun-so-far/&ei=u1suVaTtIYjYPeTbgbgO&bvm=bv.90790515,d.ZWU&psig=AFQjCNGmXndPToGXHRnqjUKZuHLpM_FOWA&ust=1429187868905049


H3PO4 clusters 

• H3PO4 molecules 
      three proton-donor and one acceptor sites 

• Hydrogen bond network:  
        Neighboring O---O: < 2.5 Å 
             O-H bond length: > 1.07 Å  

• High proton conductivity 
     98% by Grotthuss-type hopping 
       2% by hydrodynamic diffusion  
                            of charged species 

Phosphoric Acid  

• Intermediate acidity, 7% dissociation 
      extensive H-bonds  
      (high viscosity & low vapor pressure) 

• Anhydrous conductivity 
     Charge carriers by self-dissociation  

       5 H3PO4 = 2 H4PO4
+ + H3O+ + H2PO4

-+ H2P2O7
2- 

mol/l  16.815      0.890        0.461     0.429       0.461 



High Temperature Polymers 

Polybenzimidazoles 
                        
(Poly (2,2´-m-(phenylene)-5,5´´-bibenzimidazole (PBI) 
 

TG = 425-435°C  

Applications 
 
 As seals, insulator, valves ... 
 
 As fibers for protective garments  
    to astronauts, race-car drivers, fire-men.   
 
 As films & membranes  
    for reverse osmosis and ultra-filtration...  
 
 Becoming conductive when …...  

Danish pilot production 
Danish Power Systems 



 
> 90wt% H3PO4 

PA networked by PBI thread 
 

• PA/PBI = 20-40  
     (direct casting) 
• PA/PBI = 10-12  
     (post doping) 
• Self-standing 
   & mechanically strong   
• Essentially one phase  

> 90wt% H3PO4 

Concentrated H3PO4  
 

• Viscous yet flowing 
• Extensive H-bond network 
   - high surface tension 
   - high dielelectric constant 
   - nearly pure hopping 
   - anhydrous conductivity 

Acid doping 
    -  more than immobilizing matrix 



PBI-PA membranes  
 

  - Anhydrous conductivity  
  - Nearly zero water-osmotic drag coefficient 
  - 10-50% remaining conductivity 
  - Almost unchanged hopping mechanism 
 

• Nafion:  80oC: ≈3 

• PBI/H3PO4:  
  150oC, ≈ 0  
      (Li et al., 1998) 



Why unchanged hopping mechanism 
HA + B = BH+ + A-   
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∆pKa 

N/H = 1 
Water free 

N/H = 2 
Water-free 

N/H = 2 
n=4H2O 

Zundel (2000), University of Munich 
 For carboxylic acids and N-bases: OH…N  ↔  O-…H+N  

∆pK50%  

Complete transfer 
No H-bonding 

MacFarlane et al. 2012 

No proton transfer 
No H-bonding 

Half-way proton transfer 
Extensive H-bonding 



Acid-base chemistry 

H3O+, pKa = -1.74 

CF3SO3H, pKa = -16 

PBI, pKa = 12.8 

H3PO4, pKa = 2.12 

PBIH+, pKa = 5.6  
 

PBI + H3PO4↔PBIH+ + H2PO4
- 

Larger ∆pKa 
- Complete H+ transfer 
- Short range H-bond network 
- Intricate H-bond breaking/forming 
- Vehicle mechanism of mobile H3O+ 

Intermediate ∆pKa 
- Incomplete H+ transfer 
- H-bond network 
- Mild strength of H-bond 
   easy breaking/forming 
- Hopping mechanism 



PBI cell performance 
Typical performance  
 

• 200 mA/cm2 at 0.65-0.67 V 
• H2-Air,  ambient pressure 
     λH2 = 1.2; λAir=2.0 
• 150-160oC 
• 1 mg Pt/cm2 

Operational features of PBI cells 
• No humidification 
  - dry hydrogen & air 
• Wide temp. range (130-210oC)  
   - wider temperature range 
   - easy airflow control 
   - dynamic load variation  
   - less demanding for cooling 



Further challenges 
• Membranes 

– Proton generative functionalities 
– Acid-base chemistry vs. protonics 
– Immobilization of doping acids  
– Durability orientated efforts 

• ORR kinetics 
– Acid anion adsorption 

• Catalysts and electrodes  
– Activity: Low loading Pt 
– Stability: Support and synergies  
– Non-precious metal catalysts 
– Electrode engineering 

• Fuelling strategies and its impact on lifetime 
• Construction materials and stack engineering 

Status and Challenges 
Status - DPS datasheet 
 
Membrane and MEA Performance 
Acid doped membranes with excellent 
chemical, thermal and mechanical 
stability. High proton conductivity at 140-
200 °C and nearly zero water drag: 
● Temperature of operation up to 200 °C 
● No humidification required 
● Very high CO tolerance above 150 °C 
 
MEA lifetime and durability: 
> 8,000 hours by continuous operation 
> 140 start-up cycles during 7,000 hours 
http://daposy.com/pdf/DPS-Dapozol-ENG-okt13.pdf 



IRD – MEA, Stack, system 

Polymer 

Catalyst 

Sealing materials 

GDL 

Bipolar plates 

DTU –  Proton conductors, Catalysts 
   KU – Catalysts 
   SDU – Components  AAU – model & simulation 
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DPS – Polym. Membr. MEA. 

Anode 

Serenergy – stack & modules 

HT-PEM in Denmark 



The group contribution to the subject 
     Proton Conductors and FC/EC Applications 

• Polymer chemistry  
• Acid doping 
• Membrane degradation 
• Phosphates 
• Catalysts 
• Electrodes 
• Fuel & electrolyser cells 
• Durability 

Citation report: 82  
You searched for: Proton conductor, fuel cell, PBI,  
                phosphoric acid, phosphate, cayalysts, etc. 
Group authors 
Address: Lyngby 



Alkanes 

Approaching intermediate temperatures  



Proton conductors  
  to fill up the temperature gap 

Kreuer et al. Chem. Rev. 2004, 104, 4637 

d) Biological systems 

c) Acid-doped PBI  

f) Condensed  
     phosphates 

a) Aqueous 
solutions 

e) Acid-doped PFSA   

Research of interest  
- acid-base chemistry  
   versus proton conductivity  
- polymer & membranes  

- condensed phosphates 

b) H3PO4 & KOH 

g) Protic ionic liquids 
     and protic plastics 

PROTON 
CONDUCTORS 



Summary 
• Fuel cells  
        An electrochemical device for energy conversion  
                 of high efficiency and less emission  
• Many material challenges 
        Proton conductors  
 - Vehicle and hopping mechanisms  
 - Water as a proton vehicle  - management and system complexation 
    - temperature limitation and secondary effects 
• DTU research 
        Proton conductors of primarily hopping mechanism  
 - allowing for higher temperatures  
 - no humidification 
 - other potential system simplification 
       Further work  
 - improvement of performance and durability 
 - fundamental understanding  
 - approaching intermediate temperatures  



HT-FUMA 

2002 2000 1998 1996 2004 2006 2008 2010 2012 

EU FP6 Carisma 

EU FP6 Autobrane Nordic Industrifond 

Nordic: HT-PEM EU: ASPEC EU: AMFC EU FP6 FURIM 

PSO: stack 

EFP: Reformer PSO: Better MEA 

STVF: Polymer 

DSF: Intrinsic 

PSO: Dura I 

PSO: MEAs 

PSO: Dura II 

ForskEl: HOTMEA 

EUDP: COBRA 

DNRF: PROCON 

2014 

PSO: Dura III 

PSO Catbooster 

DSF: 4M 

SMARTMEA 

KDFuelCells 

2016 

PURE 

PSO: UPCAT 

IF: Non-preciou  
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     the Nordic Industrial Foundation 
     PSO –F&U program 
     EFP (Energiforskningsprogrammet) 
     STVF (Statens Teknisk-Videnskabelige Forskningsråd) 
     EUDP (Energiteknologisk udvikling & demonstration)  
     DFF-FTP (Det Frie Forskningsråd/Teknologi og Produktion) 
     DSF (Det Strategiske Forskningsråd) 
     DNRF (Danmarks Grundforskningsfond) 
     IF (Innovationsfonden) 
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